45 research outputs found

    A Revised Publication Model for ECML PKDD

    Full text link
    ECML PKDD is the main European conference on machine learning and data mining. Since its foundation it implemented the publication model common in computer science: there was one conference deadline; conference submissions were reviewed by a program committee; papers were accepted with a low acceptance rate. Proceedings were published in several Springer Lecture Notes in Artificial (LNAI) volumes, while selected papers were invited to special issues of the Machine Learning and Data Mining and Knowledge Discovery journals. In recent years, this model has however come under stress. Problems include: reviews are of highly variable quality; the purpose of bringing the community together is lost; reviewing workloads are high; the information content of conferences and journals decreases; there is confusion among scientists in interdisciplinary contexts. In this paper, we present a new publication model, which will be adopted for the ECML PKDD 2013 conference, and aims to solve some of the problems of the traditional model. The key feature of this model is the creation of a journal track, which is open to submissions all year long and allows for revision cycles.Comment: 13 page

    Stacked structure learning for lifted relational neural networks

    Get PDF
    Lifted Relational Neural Networks (LRNNs) describe relational domains using weighted first-order rules which act as templates for constructing feed-forward neural networks. While previous work has shown that using LRNNs can lead to state-of-the-art results in various ILP tasks, these results depended on hand-crafted rules. In this paper, we extend the framework of LRNNs with structure learning, thus enabling a fully automated learning process. Similarly to many ILP methods, our structure learning algorithm proceeds in an iterative fashion by top-down searching through the hypothesis space of all possible Horn clauses, considering the predicates that occur in the training examples as well as invented soft concepts entailed by the best weighted rules found so far. In the experiments, we demonstrate the ability to automatically induce useful hierarchical soft concepts leading to deep LRNNs with a competitive predictive power

    Learning predictive categories using lifted relational neural networks

    Get PDF
    Lifted relational neural networks (LRNNs) are a flexible neural-symbolic framework based on the idea of lifted modelling. In this paper we show how LRNNs can be easily used to specify declaratively and solve learning problems in which latent categories of entities, properties and relations need to be jointly induced

    Lifted relational neural networks: efficient learning of latent relational structures

    Get PDF
    We propose a method to combine the interpretability and expressive power of firstorder logic with the effectiveness of neural network learning. In particular, we introduce a lifted framework in which first-order rules are used to describe the structure of a given problem setting. These rules are then used as a template for constructing a number of neural networks, one for each training and testing example. As the different networks corresponding to different examples share their weights, these weights can be efficiently learned using stochastic gradient descent. Our framework provides a flexible way for implementing and combining a wide variety of modelling constructs. In particular, the use of first-order logic allows for a declarative specification of latent relational structures, which can then be efficiently discovered in a given data set using neural network learning. Experiments on 78 relational learning benchmarks clearly demonstrate the effectiveness of the framework
    corecore